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Abstract— We consider a team of heterogeneous agents that is
collectively responsible for servicing and subsequently reviewing
a stream of homogeneous tasks. Each agent (autonomous
system or human operator) has an associated mean service
time and mean review time for servicing and reviewing the
tasks, respectively, which are based on their expertise and
skill-sets. The team objective is to collaboratively maximize
the number of “serviced and reviewed” tasks. To this end,
we formulate a Common-Pool Resource (CPR) game and
design utility functions to incentivize collaboration among team-
members. We show the existence and uniqueness of the Pure
Nash Equilibrium (PNE) for the CPR game. Additionally, we
characterize the structure of the PNE and study the effect of
heterogeneity among the agents at the PNE. We show that the
formulated CPR game is a best response potential game for
which both sequential best response dynamics and simultaneous
best reply dynamics converge to the Nash equilibrium. Finally,
we numerically illustrate the price of anarchy for the PNE.

I. INTRODUCTION

Success of a project is often contingent upon effective and

efficient collaboration among members of diverse, dynamic,

digital and dispersed teams [1]. An effective collaboration

requires each team-member to efficiently work on their tasks

while backing up other team-members by monitoring and

providing review and feedback. Such team backup behav-

ior improves team performance by mitigating the lack of

certain skills in some team-members. Lack of incentives to

backup other members may result in team-members oper-

ating individually and a poor team performance. Therefore,

for effective team performance, it is imperative to design

appropriate incentives that facilitate collaboration among the

agents while ensuring that their individual performance does

not suffer.

In this paper, we study incentive design mechanisms to

facilitate aforementioned team backup behavior among the

heterogeneous agents. In particular, we pose this problem as

a CPR game [2, 3] and design utilities that yield the desired

behavior. CPR games is a class of resource sharing games in

which the players jointly manage a common pool of resource

and make strategic decisions to maximize their utilities.

Human-team-supervised autonomy is a class of motivating

problems for our setup. Queueing theory has emerged as a

popular paradigm to study these problems [4–7]. However,

these works predominantly consider a single human operator.

There have been limited studies on human-team-supervised

autonomy. These include simulation based studies [8–10],
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ad hoc design [11], or non-interacting operators [12]. Here,

we focus on a game-theoretic approach to study one of the

key features of the human-team-supervised autonomy: the

team backup behavior, which refers to the extent to which

team-members help each other perform their roles [9].

We model team backup behavior in the following way. We

consider an unlimited supply of tasks from which each team-

member may admit tasks for servicing at a constant rate.

We assume that each serviced task is stored in a common

review pool for a second review. Each team-member can

choose to spend a fraction of their time to review tasks from

the common review pool and provide backup to improve

the quality. But without any incentives, members may not

choose to review the tasks as it may affect their individual

performance. We focus on design of incentives, within the

CPR game formalism, to facilitate the team backup behavior.

Our formulation has features similar to the CPR game

studied in [3, 13, 14]. In these works, authors utilize prospect

theory to capture the risk aversion behavior of the players

investing into a fragile CPR that fails if there is excessive

investment in it. In case of its failure, no player receives

any return from the CPR. While our design of the common

review pool is similar to the fragile CPR, our failure model

incorporates the constraint that only serviced tasks can be

reviewed. In contrast to the agent heterogeneity due to

prospect-theoretic risk preferences in [3], heterogeneity in

our model arises due to differences in agents’ mean service

and review times.

The major contributions of this work are fourfold. First, we

present a novel formulation of team backup behavior and de-

sign incentives, within the CPR game formalism, to facilitate

such behavior. Second, we show existence and uniqueness

of the PNE for the proposed game. Third, we show that

the proposed game is a best response potential game [15],

for which both sequential best response dynamics [16] and

simultaneous best reply dynamics [17] converge to the PNE.

Thus, the policies of self-interested agents in a decentralized

team will converge to the PNE. Finally, we numerically

illustrate the inefficiency of the PNE using Price of Anarchy

and show its variation as a function of heterogeneity.

The rest of the paper is structured in the following way. In

Section II, we describe our problem, pose it as a CPR game,

and design utilities that facilitate the team backup behavior.

In Section III, we show the existence and uniqueness of the

PNE and show that the proposed game is a best response po-

tential game for which the best response dynamics converge

to the Nash equilibrium. Numerical illustrations showing

the effects of heterogeneity on the Price of Anarchy are

discussed in Section IV. Finally, we conclude in Section V.





rate of return, rR ∶ S ↦ R>0 for each reviewed task and a

probability of failure p ∶ S ↦ [0,1].
Let x ∈ R defined by x = λS

T − λ
R
T = µ

S
T −∑

N
i=1 aiλ

R
i be

the slackness parameter for the system constraint (3). The

constraint (3) is violated for the negative values of x. The

slackness parameter characterizes the gap between the total

service admission rate and the total review admission rate for

all the players. In order to maximize the high quality team

throughput, i.e., the number of tasks that are both serviced

and reviewed, it is desired to incentivize the team to operate

close to x = 0.

We assume that the rate of return rR and the failure

probability function p both depend on the strategy of all the

players only through the slackness parameter x. Furthermore,

we assume that rR is strictly decreasing in x. Since for each

x ∈ [0, µS
T ], the system constraint (3) is satisfied, the rate of

return is maximized at x = 0. Such choice may correspond

to a scenario in which, e.g., an employer generates higher

revenue based on the high quality throughput of her com-

pany, i.e., when the team efficiently reviews all the serviced

tasks, which she redistributes among her employees as an

incentive based on their contribution to the review process.

Since the system constraint (3) is a hard constraint that

must be satisfied at all times, the failure probability function

p(x) = 1 if the system constraint (3) gets violated, i.e.,

the slackness parameter x < 0. We assume that the failure

probability p is non-increasing in x, and approaches 1 as x
approaches 0. If the common review pool fails, then uR

i = 0

for each player i. Therefore, we define the utility uR
i by

uR
i (λR

i , λ
R
−i) = {0, with probability p(λR

i , λ
R
−i),

λR
i r

R(λR
i , λ

R
−i), otherwise.

(5)

Let ui(λR
i , λ

R
−i) = uS

i +u
R
i be the total utility of the player

i ∈ N . Each player i tries to maximize her expected utility

ũi ∶ S ↦ R defined by

ũi = E[uS
i + u

R
i ],

= λS
i r

S
+ λR

i r
R(λR

i , λ
R
−i)(1 − p(λR

i , λ
R
−i)), (6)

where the expectation is computed over the failure event.

Since rR and p depend on the review admission rates of all

players only through the slackness parameter x, with a slight

abuse of notation, we express rR(λR
i , λ

R
−i) and p(λR

i , λ
R
−i) by

rR(x) and p(x), respectively. Substituting (1) in (6), yields

ũi = µ
S
i r

S
+ λR

i

⎡⎢⎢⎢⎢⎣
rR(x)(1 − p(x)) − (µS

i

µR
i

)rS
⎤⎥⎥⎥⎥⎦
,

=∶ µS
i r

S
+ λR

i fi(x), (7)

where fi ∶ S ↦ R is defined by

fi(λR
i , λ

R
−i) = fi(x) = rR(x)(1 − p(x)) − (µ

S
i

µR
i

)rS . (8)

The function fi is the incentive for the player i to review

the tasks. Note that the player i will choose a non-zero λR
i if

and only if she has a positive incentive to review the tasks,

i.e., fi(x) > 0. Otherwise, the player i drops out without

reviewing any task from the common review pool (λR
i = 0)

and focuses solely on servicing of tasks (λS
i = µ

S
i ), thereby

maximizing her expected utility given by ũi = µ
S
i r

S .
In the following, we will refer to the above CPR game

by Γ = (N ,{Si}i∈N ,{ũi}i∈N ). In this paper, we are inter-

ested in the equilibrium strategies for the players that are

characterized by a PNE defined below.
Definition 1 (Pure Nash Equilibrium): A PNE is a strat-

egy profile λR∗
= {λR

i

∗}i∈N ∈ S, such that for each player

i ∈N , ũi(λR
i

∗

, λR
−i

∗) ≥ ũi(λR
i , λ

R
−i

∗), for any λR
i ∈ Si.

Let bi ∶ S−i ↦ Si defined by

bi(λR
−i) ∈ argmax

λR
i
∈Si

ũi(λR
i , λR

−i),
be a best response of the player i to the review admission

rates of the other players λR
−i. A PNE exists if and only if

there exists an invariant strategy profile, λR∗
= {λR

i

∗}i∈N ∈
S, such that λR

i

∗

= bi(λR
−i

∗), for each i ∈N .

C. Social Welfare

Social welfare corresponds to an optimal (centralized)

allocation by the players with respect to a social wel-

fare function. We choose a typical social welfare function

Ψ(λR) ∶ S ↦ R defined by the sum of expected utility of all

players, i.e.,

Ψ =
N

∑
i=1

ũi =

N

∑
i=1

[µS
i r

S
+ λR

i fi(x)]
= (λR

T + x)rS + λR
T r

R(x)(1 − p (x)) . (9)

A social welfare solution is an optimal allocation that

maximizes the social welfare function. It can be shown that

the social welfare solution for ∑N
i=1 aiλ

R
i = c, for any given

c ∈ R≥0 can be analytically determined. Since ∑N
i=1 aiλ

R
i ∈[0, µS

T + µR
T ], we can employ a bisection algorithm to

compute the optimal c and hence, the optimal social welfare

solution.

Lemma 1 (Social welfare solution): For the CPR game Γ

with the constraint ∑N
i=1 aiλ

R
i = c and the players ordered

in the increasing order of
µS
i

µR
i

, the associated social welfare

solution, λR
∈ S is given by

λR
= [µR

1
, µR

2
,⋯, µR

k−1,
1

ak
(c − k−1

∑
i=1

aiµ
R
i ), 0,⋯, 0] .

For brevity of space, we skip the proof of Lemma 1. The

details of the proof can be found in [19].

III. EXISTENCE AND UNIQUENESS OF PNE AND

CONVERGENCE TO THE PNE

In this section, we study the existence and uniqueness of

the PNE for the CPR game Γ and show that the best response

dynamics converge to the unique PNE. Each player i ∈ N
chooses a review admission rate from her strategy set Si =[0, µR

i ] and receives an expected utility ũi given by (7). For

any given λR
−i ∈ S−i, we obtain an upper-bound λ

R

i ∶ S−i ↦ Si

on λR
i defined by

λ
R

i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if
µS
T−∑j∈N ,j≠i ajλ

R
j

ai
< 0,

µS
T−∑j∈N ,j≠i ajλ

R
j

ai
, if 0 ≤

µS
T−∑j∈N ,j≠i ajλ

R
j

ai
≤ µR

i ,

µR
i , if

µS
T−∑j∈N ,j≠i ajλ

R
j

ai
> µR

i ,





review admission rate for the player i at a PNE is non-zero

and satisfies the implicit equation

λR∗

i =min{ − fi(λR∗

i , λR∗

−i )
f ′i(λR∗

i , λR∗

−i ) , µR
i },

if and only if, fi(λR∗

i , λR∗

−i ) > 0. The proof of these results

can be found in [19, Corollary 2].

We now establish the Proposition. Let λR∗

k1
and λR∗

k2
be

the review admission rates at a PNE for the players k1 and

k2, respectively, with
µS
k1

µR
k1

≤
µS
k2

µR
k2

. We assume λR∗

k1
< λR∗

k2
and

prove the first statement using a contradiction argument.

Case 1: λR∗

k1
= 0. From the statement (a) above,

fk1
(λR∗

k1
, λR∗

−k1
) ≤ 0. From (8), the incentives fk1

and fk2

for the players k1 and k2 at a PNE satisfies:

fk2
= fk1

+ (µS
k1

µR
k1

−

µS
k2

µR
k2

)rS = fk1
+ (ak1

− ak2
)rS < 0.

Thus, from the statement (a) above, λR∗

k2
= 0, which is a

contradiction. This also proves the Proposition statement (ii).

Case 2: λR∗

k1
> 0. By assumption λR∗

k1
< λR∗

k2
, from the

statement (b) above, λR∗

k1
and λR∗

k2
satisfies the implicit

equations, λR∗

k1
= min{ − fk1

(λR∗

k1
, λR∗

−k1
)

f ′
k1
(λR∗

k1
, λR∗

−k1
)
, µR

k1
} and λR∗

k2
=

min{− fk2
(λR∗

k2
, λR∗

−k2
)

f ′
k2
(λR∗

k2
, λR∗

−k2
)
, µR

k2
}, respectively. By the hypothesis

λR∗

k1
< µR

k1
, and therefore, λR∗

k1
= −

fk1

f ′
k1

. From (8) and (10a):

λR∗

k2
=min{ − fk2

f ′
k2

, µR
k2
}

≤ −
fk2

f ′
k2

= −
fk1
+ (ak1

− ak2
)rS

ak2

ak1

f ′
k1

≤ λR∗

k1
,

which is a contradiction. Hence, if λR∗

k1
< µR

k1
, then λR∗

k1
≥

λR∗

k2
for each k2 > k1.

It follows from Proposition 1 that the review admission

rate of each player i at a PNE is monotonically decreasing

with the ratio
µS
i

µR
i

. Therefore, at a PNE, as the heterogeneity

among the players become very large, players with small

(respectively, large) ratio of
µS
i

µR
i

review the tasks with high

(respectively, zero) review admission rate. Thus, a PNE has

characteristics similar to the social welfare solution obtained

in Lemma 1. We illustrate this further in Section IV.

Theorem 2 (Uniqueness of PNE): The PNE admitted by

the CPR game Γ, under the Assumptions (A1-A3), is unique.

Proof [Sketch]: Uniqueness of the PNE is established by

considering multiple PNEs, and showing by contradiction

arguments that the number of players with non-zero review

admission rate and the slackness parameter x are the same at

each PNE. This leads to uniqueness of the PNE. The details

of the proof can be found in [19]. ∎

Theorem 3 (Convergence to the PNE): For the CPR

game Γ, under the Assumptions (A1-A3), the best response

dynamics converges to the unique PNE.

Proof [Sketch]: It can be verified that the proposed CPR

game Γ under the Assumptions (A1-A3) belongs to a class

of Quasi Aggregative games defined in [21] in which the

expected utility function ũi for each player i is a function of

the player’s own strategy λR
i , and an interaction function

σi(λR
−i) ∶ S−i ↦ R independent of λR

i . Applying [21,

Theorem 1], we conclude that if the best response for all the

players is decreasing in σi(λR
−i) = ∑N

j=1,j≠i ajλ
R
j , then the

CPR game Γ is a best response pseudo-potential game [22].

By realizing x = µS
T − aiλ

R
i − σi(λR

−i) and differentiating

bi with respect to σi(λR
−i), we formally show that the best

response mapping bi(λR
−i) is monotonically decreasing in

σi(λR
−i), for each i ∈N (see [19] for detailed proof).

Remark 1 in [16] states that a best response pseudo-

potential game with a unique best response is an instance of

best response potential game [15]. Therefore, the CPR game

Γ, with its unique (Lemma 3) and monotonically decreasing

best response bi in σi(λR
−i), is a best response potential game.

Hence, simple best response dynamics such as sequential

best response dynamics [16] and simultaneous best response

dynamics [17] converge to its unique PNE. ∎

IV. NUMERICAL ILLUSTRATIONS

In this section, we numerically illustrate the inefficiency

of the PNE by comparing its structure with the social welfare

solution as well as by studying the variation of Price of

Anarchy (PoA) [23] with increasing heterogeneity among

the players. PoA is defined as the ratio of the social welfare

function Ψ, evaluated at the social welfare solution and the

PNE, respectively. Therefore, PoA =
(Ψ)SW

(Ψ)PNE
≥ 1.

In our numerical illustrations, we obtain the PNE by

simulating the sequential best response dynamics of players

with randomized initialization of their strategy. We verify the

uniqueness of the PNE for different choices of functions,

rR(x) and p(x) satisfying Assumptions (A1-A2), and by

following sequential best response dynamics with multiple

random initializations for the strategy of each player. Further-

more, in our numerical simulations, we relax the Assumption

(A3) and still obtain the unique PNE.

A comparison of the social welfare solution (obtained

using fmincon in MATLAB) and the PNE, for low and high

heterogeneity among players, is shown in Fig. 3. For our

numerical illustrations, we choose the number of players,

N = 6, and choose the functions rR(x) and p(x), satisfying

the Assumptions (A1-A2) as following:

rR(λR
i , λ

R
−i) = rR(x) = 5[1 − exp{0.5(x − µS

T )}],
pRi (λR

i , λ
R
−i) = p(x) = {1, if x ≤ 0,

exp(−0.5x), otherwise,

where x = µS
T − ∑

N
i=1 aiλ

R
i is the slackness parameter.

To characterize the heterogeneity among the players, we

do a random sampling of the players’ maximum service

admission rate and maximum review admission rate from

normal distributions with fixed means, MµS
= 40, and

MµR
= 80, and identical standard deviation, ρ ∈ R>0. Any

non-positive realizations were discarded. We consider the

standard deviation of the distributions as the measure of

heterogeneity among the players.
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Fig. 4: Price of Anarchy with the increasing heterogeneity among the agents

Fig. 3 shows that in the social welfare solution, the players

with low ratio of
µS
i

µR
i

review the tasks at maximum review

admission rate and the players with high ratio of
µS
i

µR
i

drop

out of the game. At PNE, the strategy profile of the players

follow the characteristics described by Lemma 1. Lastly, with

the increase in heterogeneity among the players, the PNE

starts to approach the social welfare solution.

Fig. 4 shows the variation of the PoA with increasing

heterogeneity among the players. In the case of homogeneous

players, i.e., ρ = 0, any strategy profile with same λR
T , pro-

duces same value of the social welfare function, Ψ (see (9)),

and hence results in PoA = 1. As we initially increase the

heterogeneity among the players, the PNE starts to deviate

from the social welfare solution, resulting in an increase

in PoA. Finally, with a large increase in the heterogeneity

among the players, the PNE starts to approach the social

welfare solution, i.e. the players with small ratio of
µS
i

µR
i

starts reviewing the tasks with high review admission rate,

and the players with very large ratio of
µS
i

µR
i

starts to drop

out of the game (see Lemma 1). We note that the PoA

≤ 1.15, suggesting that the unique PNE is close to the optimal

centralized social welfare solution.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We studied incentive design mechanisms to facilitate ef-

fective team collaboration among the agents servicing a

stream of homogeneous tasks. In particular, we designed

a Common-Pool Resource (CPR) game to incentivize team

collaboration and showed the existence and uniqueness of

PNE. We showed that the proposed CPR game is an instance

of the best response potential game and by playing the

sequential best response against each other, players converge

to the unique PNE. At PNE, the review admission rate of

the players decreases with the increasing ratio of
µS
i

µR
i

, i.e.,

the review admission rate is higher for the players that

are “better” at reviewing the tasks than servicing the tasks

(characterized by their average service and review time).

There are several possible avenues of future research. It is

of interest to extend the results for broader class of games

with less restrictive choice of utility functions, i.e. games

that are not quasi-aggregative or commonly used games of

weak strategic substitutes (WSTS) or complements (WSTC).

An interesting open problem is to consider a team of agents

processing stream of heterogeneous tasks. In such a setting,

incentivizing team collaboration based on the task-dependent

skill-set of the agents is also of interest.
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